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Role of geometry and topological defects in the one-dimensional zero-line modes of graphene
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Breaking inversion symmetry in chiral graphene systems, e.g., by applying a perpendicular electric field in
chirally stacked rhombohedral multilayer graphene or by introducing staggered sublattice potentials in monolayer
graphene, opens up a bulk band gap that harbors a quantum valley-Hall state. When the gap size is allowed to
vary and changes sign in space, a topologically confined one-dimensional (1D) zero-line mode (ZLM) is formed
along the zero lines of the local gap. Here, we show that gapless ZLM with distinguishable valley degrees of
freedom K and K ′ exist for every propagation angle except for the armchair direction that exactly superpose the
valleys. We further analyze the role of different geometries of top-bottom gated device setups that can be realized
in experiments, discuss the effects of their edge misalignment, and analyze three common forms of topological
defects that could influence the 1D ZLM transport properties in actual devices.
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I. INTRODUCTION

Graphene, a two-dimensional honeycomb-lattice structure
of carbon, is intrinsically a zero-gap semimetal [1]. Its internal
binary degrees of freedom such as the valleys, sublattices, and
top/bottom layers in multilayers lead to a two-dimensional
electron gas with valley selective chirality of the electrons
near the Fermi energy. As a consequence, breaking the
spatial inversion symmetry through staggered AB sublattice
potentials in graphene, or by applying a vertical electric
field in rhombohedral multilayers [2,3] opens up a band gap
that embodies a bulk valley-Hall effect [4], which is robust
against disorder provided that the K and K ′ valley coupling
is weak [5]. A variety of topologically distinct ground states
result in the presence of valley selective mass terms in the
Dirac Hamiltonian of graphene [4–16] and Dirac fermion
zero-energy modes [17,18] are expected when the local gap
or mass of the Dirac Hamiltonian changes sign in real space.
These zero modes have been proposed in solitons at domain
walls of alternating single-double bonds of the carbon atoms in
polyacetylene [19] whereas one-dimensional (1D) zero lines
of the local Dirac gap in real space were proposed in bilayer
graphene at regions where the applied perpendicular electric
field changes sign [20–23]. The 1D zero-line modes (ZLM)
[24] due to kinks in the Dirac mass are naturally expected in
other graphenic honeycomb systems like monolayer graphene
[25,26], graphene superlattices [27], multilayer graphene [21],
and AB/BA stacking domains at opposite mass honeycomb
lattice interfaces [28], or tilted multilayer grain boundaries
[29,30]. It is expected from theory that these ZLMs will have
special transport properties compared to ordinary 1D channels.
For instance, the analysis of the low-energy Hamiltonian
indicates that the ZLMs associated with different valleys are
time-reversal opposites encoded with opposite chirality that
propagate along the same trajectory, and therefore have a
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substantial spatial overlap that would enhance their mixing
in the presence of disorder. However, analyses based on a
realistic tight-binding Hamiltonian have shown that the ZLMs
are extremely robust against backscattering for both short
and long-range disorder, exhibiting long mean-free paths on
the order of hundreds of micrometers for typical magnitudes
of disorder strength expected in experiments [22,28]. The
reason for this unexpected robustness to backscattering has
been attributed to the rather wide spread of the wave func-
tions across the zero line that suppresses the backscattering
probability, resulting in practically dissipationless transport
along any curved zero-line trajectory. Interesting transport
features are expected in more complex geometries formed
by intersecting zero lines [24] in beam splitter geometries
that dictate special current partition laws in transport channels
in a network of ZLMs. These intersecting zero-line setups
can in principle be realized by means of spatially tunable
electric fields in bilayer graphene or by a uniform field in
systems with multiple stacking-fault domains [31]. Despite
that the ZLMs in graphene have been theoretically proposed
for several years, the experiments have shown a rather limited
progress in their realization until a recent observation and
transport measurement of a zero line in a bilayer graphene
deposited on SiO2 displaying a stacking-fault domain wall
[32]. It is desirable that the ZLM can be designed in a
more systematic manner in experiments, and the success in
realizing them in gate tunable devices depends primarily on
the degree of precision achievable in the alignment of the
top-bottom electric gates used to generate the local band gap
of bilayer graphene, as well as the achievable quality of the
crystal.

In this paper, we address the question on the feasibility
of experimental realization of ZLM in gate tunable devices
by providing a detailed account of the adverse effects that
can be introduced in the ZLMs by the misalignment of gates
and topological lattice defects. To this end, we calculate the
electronic structure and the two-terminal electron transport
for a number of device geometries and short-range disorder
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configurations for bilayer and single layer ribbon geometries
to exemplify general behaviors of the ZLMs. The article is
organized as follows. In Sec. II, we introduce the system
Hamiltonian and the transport calculation methods. Then in
Sec. III we move on to explore the effects of device geometry
in the ZLMs and propose a new simplified scheme of global
top-bottom gates intercalated with smaller gates that can
improve the chances of detecting the ZLMs in experiments.
In Sec. IV, we examine the robustness of the ZLMs in
the presence of three different kinds of topological defects.
Finally, in Sec. V, we close the paper with the summary and
conclusions.

II. HAMILTONIAN AND METHODS

The ZLM solitons can appear in AB-stacked bilayer
graphene in the presence of spatially varying interlayer po-
tential difference. The corresponding π -orbital tight-binding
Hamiltonian in real-space representation can be written as

H =
∑

〈i,j〉
ti,j c

†
i cj +

∑

i

Ui c
†
i ci , (1)

where the first term denotes both the intralayer and interlayer
nearest-neighbor hopping of the electrons, with ti,j being the
magnitude of in-plane hopping with a value of −2.6 eV
or a vertical interlayer hopping amplitude with a value of
0.36 eV [33]. Here, c†i and ci are, respectively, the creation and
annihilation operators at site i. The second term measures the
interlayer potential difference, with Ui being the site potential
energy.

The transport properties of the ZLMs are numerically
simulated by employing a mesoscopic two-terminal device,
and the conductance GRL from the left to right terminal can be
evaluated using the Landauer-Büttiker formula [34]:

GRL = e2

h
Tr(�RGr�LGa), (2)

where Gr,a are the retarded and advanced Green functions of
the central scattering region. The quantity �L/R is a linewidth
function describing the coupling between L/R-terminal and
the scattering region and can be obtained through the self-
energy �r

L/R using a transfer-matrix method [35]. Finally, the
propagation of the ZLM from the L/R-terminal is visualised
by presenting the local density of states (LDOS) at each site
[34]:

ρL/R(r,ε) = 1

2π
[Gr�L/RGa]rr, (3)

where ε is the Fermi energy.

III. DEVICE GEOMETRY EFFECTS IN THE
ZERO-LINE MODES

The ZLMs in bilayer graphene have been theoretically
proposed to appear along the zero lines of the interlayer
potential difference. In the absence of an AB/BA stacking
fault that reverse the valley-Hall conductivity [28–30], it is
necessary to reverse the sign of the electric fields in order to
produce such a zero field line. Usually, the confinement effect
caused by the interface potentials will partially localize the

FIG. 1. (Color online) Bands corresponding to zero-line (red),
valley Hall (black), and the interface bound modes (blue) for
distinct profiles of the interlayer potential difference. The presence
of interlayer potential variations indicated in the upper panel causes
the band gap closure due to the formation of interface bound modes
(IBM). The comparison between (a) and (b) and (c) and (b) shows
the specific dependence of the IBM on different shapes of the mass
variation at the interface, while that between (a) and (c) and (b) and
(d) indicates the essentialness of the mass reversal for the formation
of the ZLM. Figure adapted from the supplementary information of
Ref. [22].

wave functions of the bulk modes and lead to the formation of
the interface bound modes (IBM) [20,22,23], whose physical
origin is qualitatively different from that of the ZLM. The
energy bands of the IBM depend on the details of the potential
profiles and will reduce the band gap where the ZLM is
hosted (see Fig. 1). To minimize the band-gap closure, a sharp
potential variation is desired.

For this purpose, two pairs of top and bottom gates adjacent
to each other are needed, as shown in Fig. 2. Ideally, the
two sets of top and bottom gates should be arranged in a
perfect way as displayed in Fig. 2(a) to induce an abrupt
change of the electric field. Nevertheless, the error bars of
current lithographic techniques is expected to introduce small
misalignments between the gate edges on the order of a few
tens of nanometers. In what follows, in this section, we analyze
the effects of device geometry such as the zero-line orientation
angle and the misalignment of the gate edges. We begin by
showing in Sec. III A that the ZLMs have identifiable valley
indices for the counter-propagating edge modes along arbitrary
zero lines except the armchair direction. In Sec. III B, we focus
on two typical misalignments between the adjacent gates in the
domain wall and discuss the consequence of their existence
on the dispersion relation of ZLMs. Finally, in Sec. III C, we
propose an alternative device setup that reduces the complexity
in the gate alignment process and simplifies the need for a
precise control in patterning the electric gates required in the
experimental realization of the ZLMs.

A. Zero-line modes with arbitrary orientations

Up to the present, two representative graphene ribbons
have been broadly investigated in the study of the ZLMs:
the zigzag ribbon where valleys are well-separated and the
armchair ribbon where the K and K ′ valleys exactly overlap
and are therefore indistinguishable. Here we focus on the
electronic structure of the valley Hall modes and the kink
ZLMs when the orientation of the ribbons deviate from both
zigzag and armchair directions. We select eight representative
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FIG. 2. (Color online) Model system setups of a bilayer graphene
in the presence of spatially varying interlayer potential difference. In
actual devices, the potential profile variation depends on the thickness
of the dielectric spacer and the in-plane alignment between the gate
edges. (a) The interlayer potential difference changes sign abruptly
for perfect top-bottom gate alignment. (b) A finite in-plane separation
L between two top (bottom) gates smoothes the potential variation.
(c) A relative shift l that introduces misalignment between the top
and the bottom gates further reduces the abruptness of the potential
variation.

orientations with different ribbon periodicities including the
zigzag, armchair, and six other orientations labeled with (1–6)
that are neither zigzag nor armchair, as shown in Fig. 3. The
associated band structures of the valley Hall modes are shown
in Figs. 4(a1)–4(a8) with the interlayer potential difference
of 2U = 1.0t . It can be seen that the bulk band gaps �

are identical for all kinds of bilayer graphene ribbons, and
various gapless and gapped edge modes depicted in blue
lines appear for each orientation except the armchair case. In
Fig. 4(a1), for the zigzag bilayer graphene ribbon, the two pairs
of gapless edge modes located at valleys K and K ′ are well

FIG. 3. (Color online) Six intermediate orientation angles be-
tween the horizontal zigzag edge and the armchair edge angle of π/6.
Nanoribbon geometries with edges oriented along the intermediate
angles are labeled with indices 1–6 and have ribbon supercells of
different periodicity.

FIG. 4. (Color online) Band structure of quantum valley Hall
modes and the corresponding ZLMs for different bilayer graphene
ribbons given in Fig. 3. The QVH edge modes and the ZLMs are
labeled in blue. K and K ′ denote the two valleys, which are totally
mixed at the � point for the armchair ribbon. (a1)–(a8) Band structure
of quantum valley Hall modes. (b1)–(b8) Band structure of ZLMs.

separated in momentum space. The valley-Hall edge modes
corresponding to valleys K and K ′ are connected with the same
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valence (conduction) bands, indicating they are intrinsically
distinct from the gapless edge modes in the quantum Hall
insulators and Z2 topological insulators. When the orientation
gradually deviates from the zigzag direction, the two valleys
approach each other while the edge modes remain gapless in
Figs. 4(a2)–4(a4) for the ribbons labeled as 1–3 in Fig. 3. When
the ribbons further evolve towards the armchair profile (see the
zero lines labeled 4–6 in Fig. 3), the valley-Hall edge modes in
Figs. 4(a5)–4(a7) gradually develop gaps. This behavior can
be understood as resulting from the intervalley scattering due
to the mixing of the two valleys. In the limit of maximum
intervalley scattering for the armchair ribbon, the edge modes
vanish completely, as shown in Fig. 4(a8). The band evolution
of the QVH states for our given ribbon sequence implies that
the vanishing of the valley-Hall modes undergoes a gradual
process accompanied with a continuous variation of the edge
state gaps, which in turn reflects the gradual increase in the
strength of intervalley scattering.

A contrasting behavior is delivered on the right column
of Fig. 4, which plots the band structures of the ZLMs
under spatially varying interlayer potential differences with
|U | = 0.5t , as illustrated in Fig. 2(a). The bulk band gap
� remains the same as in the case with uniform interlayer
potential difference. Inside the bulk band gaps, the ZLMs
are highlighted in blue and appear for all the eight kinds of
ribbons. For the zigzag zero line displayed in Fig. 4(b1), two
pairs of gapless ZLM with opposite propagation directions
are well separated and located at different valleys in the
momentum space. When the zero line deviates from the zigzag
direction, as plotted in Figs. 4(b2)–4(b7), the two pairs of
gapless ZLMs gradually cross each other, accompanied by the
neighboring valleys K and K ′. When the zero line evolves
into the armchair direction, the two pairs of ZLMs completely
overlap in momentum space and a small avoided crossing gap
opens up [see Fig. 4(b8)]. A striking difference from their
QVH edge mode counterparts is that the ZLMs remain all
the way gapless by connecting the conduction and valence
bands, except for the aforementioned tiny avoided gap for the
armchair case.

It is noteworthy that as the bilayer graphene ribbon
gradually deviates from the zigzag direction to the series
of ribbon geometries listed in Fig. 3 the valleys K and K ′
remain distinguishable while their separation in momentum
space becomes smaller until they merge completely for the
armchair ribbon configuration. Therefore the arbitrariness in
the propagation direction of the zero lines does not pose a
severe challenge for the experimental realization of ZLMs.
Based on earlier transport simulations [22], we expect that the
ZLMs should be robust against moderate disorder, both long-
and short-range, due to the wide spread of the ZLM wave
functions.

B. Misalignment of gates

Even though many different types of theoretical studies of
the ZLM have been presented in the literature, there has been
only a limited progress towards their experimental realization
[32]. Most theoretical investigations of the ZLMs have been
based on the ideal limit where the potential profile between
the layers changes abruptly across the zero line as shown in

FIG. 5. (Color online) Band structure (only shown the bands
around valley K) of a bilayer graphene in the presence of spatially
varying interlayer potential difference for the gate splitting setups
shown in Fig. 2(b). L = 0, 17, 34, 51 nm respectively in the four
panels. The ZLMs are depicted in blue. The green dashed lines
indicate the bulk band gap hosting the ZLM in the ideal setup of
L = 0, and the pink dashed lines indicate the effective band gaps
hosting the ZLMs in setups with increased L.

Fig. 2(a). In actual preparations, however, deviations due to the
finite separation between the gate and graphene, and the in-
plane misalignment of the gates are unavoidable. Two sources
of misalignment are illustrated schematically in Figs. 2(b) and
2(c) that obscure the formation of ZLMs. Below we discuss
these negative factors in detail, first assuming an extreme case
where the interlayer potential difference is zero all along across
the lateral extent of the zero lines and later switching to a more
realistic profile where the interlayer potential difference varies
linearly [22].

Figure 2(b) shows a typical device setup where two
precisely aligned top (bottom) gates are separated by a distance
of L. Figure 5 plots the associated band structure near valley
K in the presence of an extreme interlayer potential variation
as mentioned before. The separation distances are set to be
L = 0,17,34,51 nm respectively in the four panels of Fig. 5
and the ZLMs are depicted in blue. It is clear that when L

increases, additional IBM states appear within the bulk band
gap (indicated by the green dash lines), which leads to smaller
effective band gaps (indicated by the pink dash lines) that
enclose the ZLMs. The finite splitting of gates thus is unfavored
in the realization of the ZLMs. Nevertheless, our numerical
results show that even for L > 100 nm, sizeable band gaps
persist [22] and it should be possible to measure the ZLMs in
experiments.

Another geometry distortion consists in a vertical misalign-
ment between the top gates and the bottom gates, which is
measured in the relative shift of l as shown in Figs. 2(c).
Figure 6 demonstrate the band evolution for a fixed in-plane
gate separation distance of L = 26 nm and different shifts
of l = 0, 4.3, 8.5, 17, and 26 nm. As l increases, the bound
states emerging from the conduction and those emerging from
the valence bands become more and more unbalanced, i.e.,
the density of the bound states connected with the conduction
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FIG. 6. (Color online) Band structure of a bilayer graphene near
valley K in the presence of spatially varying interlayer potential
difference for setups shown in Fig. 2(c). The ZLMs are depicted in
blue. The separation distances are set to be L = 26 nm with relative
shifts of l = 0,4.3,8.5,17,26 nm, respectively, in the five panels.

bands becomes higher, while those connected with the valence
bands become smaller or even vanishing in the limit of l → L,
although the gapless ZLMs are still located within the bulk
band gap. The presence of vertical misalignment between
the top and the bottom gates in real devices can become a
bottleneck in the experimental realization of the ZLMs.

C. Simplified dual gate device setup

As seen from the above discussion, the realization of ZLMs
is constrained by both the finite splitting between the two
top (bottom) gates and the vertical misalignment between the
top gates and the bottom gates. Both geometry distortions
are difficult to eliminate with present device fabrication
capabilities where the precise alignment of four independent
gates (two top and two bottom gates) on the nanometer scale
is required. In this section, we propose an alternative device
setup that can simplify the would-be formidable gate alignment
procedure.

As shown in Fig. 7, our proposed device setup contains
two asymmetric sets of gates. The outermost two green layers
represent two global gates covering the whole area of the
bilayer graphene device. The inner two green layers serve
as local gates, each covering half of the sample plane. The

FIG. 7. (Color online) Proposed device setup to measure the 1D
ZLM in bilayer graphene. The black solid lines represent the bilayer
graphene and green lines represent the gate electrodes. The dielectric
barrier materials are depicted in dark blue. In this setup, only the two
local gate electrodes need to be aligned.

FIG. 8. (Color online) Band structure (only shown the bands
around valley K ′) of proposed device setup (for setup shown in Fig. 7).
The blue lines indicate the ZLMs. L denotes the separating distance
of two local gates. L = −6.4, − 3.4,0,3.4,6.4 nm in the five panels,
respectively.

interlayer potential differences imposed by the two sets of gates
are exactly opposite. The ZLMs are expected to propagate
along the adjacent boundaries of the two local gates. Compared
to the conventional gating scheme, the advantage of our
alternative device setup lies in the use of two global gates,
which is free of alignment and leaves the separation distance
L between two local gates the only parameter to adjust. Subject
to the precision control during the fabrication, L may fluctuate
between positive and negative, corresponding respectively to
the departure and overlap of the two local gates. Finely tuning
the separation distance to be L = 0, the proposed device
restores the ideal setup depicted in Fig. 2(a).

Figure 8 illustrates the band evolution of our proposed
device around valley K . The zero line is supposed to be along
the zigzag direction and the interlayer potential variations are
set to be zero across the zero line. The separation distance
between the local gates is set to L = −6.4, −3.4, 0, 3.4, and
6.4 nm, respectively. For L = 0, the ideal ZLMs appear inside
the bulk band gap �. When L increases, the bound states
emerge as expected and the ZLMs are squeezed and shifted
aside in momentum space. In contrast to the traditional setups
where the ZLMs shrink in energy and the band dispersion is
distorted, the ZLMs produced in our device setup exist over the
whole energy range of � and exhibit undistorted dispersion,
which suggests that our alternative setup not only simplifies
the experimental preparation but also guarantees a ZLM signal
of high quality.

IV. ROLE OF TOPOLOGICAL DEFECTS

In the previous section, we discussed the possible influence
of the device geometry details in the experimental realization
of the ZLM in bilayer graphene. Here we explore the effects
of topological defects in the electronic structure and transport
properties of the ZLM. Engineering topological line defects
and grain boundaries is a way to produce the necessary
AB/BA type stacking faults that lead to the formation of
opposite valley-Hall effects and thus the zero lines at the
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interface region. AB/BA type domains have been proposed to
exist theoretically in narrow graphene nanoribbons flanked by
hexagonal boron nitride sheets of opposite topology [28] and
in tilt boundaries of multilayer graphene [29], and they have
been experimentally observed in gated bilayer graphene at the
interface region between stacking faults [31,32]. It is expected
that topological line defects as well as grain boundaries can
introduce the necessary stacking faults to produce the zero
lines. In experiments, it is known that the impurities are
mainly distributed around graphene sample boundaries and are
unlikely to have destructive effects in the 1D ZLMs that are
located in the interior. Therefore, instead of focusing on weak
on-site external disorder, we will consider internal topological
defects (intrinsic structural defects) that can easily appear
during the growth process either in the form of point defects
or grain boundaries. Herein below, we study the effect of the
topological defects on the formation of ZLMs in single-layer
graphene.

We use the tight-binding model Hamiltonian to investigate
the effects of the topological defects on the electronic prop-
erties of the 1D ZLMs. Since we have shown that the ZLMs
are insensitive to the boundary configurations (i.e., zigzag,
armchair, or any other type of ribbon), we will only focus
on the topological defects in the zigzag graphene ribbon as
a representative case. We assume that the hopping energies
near the point defect will approximately retain the original
values of the unperturbed system. To describe better the role
of the topological defects in the 1D ZLMs, we divide our
discussion into two parts: (i) periodic topological defects along
the zero line and (ii) a single topological defect in a finite-sized
scattering region.

A. Periodic topological defects

Realistic materials can host a large variety of intrinsic
topological defects. Here in our discussion, we consider three
representative types of defects that form along the zero line
highlighted in blue in Fig. 9: (a) two pentagons and one
octagon; (b) two pentagons and two heptagons; and (c) two
pentagons and one octagon in a form distinct to that in Fig. 9(a).
In these, three kinds of topological defects, only the first one
has been experimentally observed [36], while the other two are
plausible theoretical proposals. In our numerical calculation,
we do not impose the staggered AB sublattice potentials in
the topological defects area, because it is not possible to
strictly label the AB sublattices in the pentagon and heptagon
lattices. As a rule of thumb, we speculate that the kink states
will be influenced most by the topological defects that (1)
eliminate most effectively the distinction between the A and
B sublattices, (2) generate the biggest number of bond links
with these sublattice unspecified sites, and (3) are connected
with the biggest number of the outermost boundary sites near
the domain wall. From this viewpoint, we can understand that
the impact of the topological defects in the kink states will
be decreasing in order from the first to the third kind. In the
first kind, each outermost boundary site has bond links with the
two sublattice unspecified dimers at the interface. In the second
kind, there are also four links with the sublattice unspecified
dimer but they are connected to the atoms that are one ring
deeper inside each domain, which reduces the adverse effect,

(a) (b) (c) 

FIG. 9. (Color online) Schematic plot of the unit cells of a zigzag-
terminated graphene ribbon in the presence of three different kinds
of topological defects. (a) The first-kind topological defect consisting
of a line defect with two pentagons and one octagon in the domain
wall region of one unit cell. (b) The second-kind topological defect
consisting of two heptagons and two pentagons in the domain wall
region of one unit cell. (c) The third-kind topological defect consisting
of two pentagons and one octagon in the domain wall region of
one unit cell. Here, the staggered AB sublattice potentials are not
considered in the domain wall region indicated with a blue color.

and there is one kink state constructive link that preserves the
sublattice distinction between the sites nearest to the interface.
In the third kind, we maintain this constructive link while
we reduce the number of destructive links by removing the
sublattice unspecified dimer at the interface.

In the following, we present the electronic structure of the
kink state bands in the presence of defects. The first kind
of topological defects shown in Fig. 9(a) is in a line form.
Therefore all the remaining atoms are still distinguishable
as A or B sublattices except for the sublattice unspecified
dimer connecting the two domains. For example, if we set
the crystal topologies of staggered AB sublattice potentials to
be the same at both sides of the zero line, we can clearly
distinguish the opposite crystal topologies at each domain
separated by the line defect. This is confirmed by the resulting
band structure as shown in Fig. 10(b), where the ZLMs are
only present at one-half of the bulk band gap [i.e., E/t ∈(0,
U0)]. Another interesting observation is that there exists an
almost three-fold degenerate flat band in the absence of site
potentials [see Fig. 10(a)], with two flat bands appearing, one
for the conduction and another for the valence band and the
ZLM inside the band gap. When we set the staggered potentials
to be opposite at both sides, the line defect also reverses the
crystal topologies and no ZLM are formed [see in Fig. 10(c)].
To visually describe the spatial distribution of the ZLM in the
presence of the first kind of topological defects, we plot the
LDOS of the ZLM injecting from the left terminal in Fig. 13(a),
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FIG. 10. (Color online) Band structure of zigzag-terminated
graphene ribbon in the presence of the first kind of topological defects
(two heptagons and one octagon in a unit cell). (a) No AB sublattice
potentials are considered. (b) AB sublattice potentials U0/t=0.1
are uniformly distributed in the whole regime except the domain
wall region. (c) The crystal topologies are different between the two
regimes separated by the topological defects rings. The blue bands
indicate the kink-state bands.

which clearly shows that the ZLM is mainly located near the
line-defect region.

For the second kind of topological defects, there are two
heptagons and two pentagons in one unit cell. In the absence
of staggered potentials, multiple flat bands form in a wide
energy range in addition to the normal zigzag graphene bands
as shown in Fig. 11(a). When the staggered AB sublattice
potentials are included, a bulk band gap opens due to the
inversion symmetry breaking. From Figs. 11(b) and 11(c),
one can observe that the ZLMs arise at both the same and
opposite crystal topologies. The corresponding ZLM for the
same topology is visually represented in Fig. 13(b), which also
shows that the ZLM still survives in the presence of the second
kind of topological defects.
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FIG. 11. (Color online) Band structure of zigzag-terminated
graphene ribbon in the presence of the second kind of topological
defects (two heptagons and two pentagons in a unit cell). (a) No
AB sublattice potentials are considered. (b) AB sublattice potentials
U0/t=0.1 are uniformly distributed in the whole regime except the
domain wall region. (c) The crystal topologies are different between
the two regimes separated by the topological defect rings. The blue
bands indicate the kink-state bands.
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FIG. 12. (Color online) Band structure of a zigzag-terminated
graphene ribbon in the presence of the third kind of topological defects
(two pentagons and one octagon in a unit cell). (a) No AB sublattice
potentials are considered. (b) AB sublattice potentials U0/t = 0.1
are uniformly distributed in the whole regime except the domain
wall region. (c) The crystal topologies are different between the two
regimes separated by the topological defect rings. Blue bands indicate
the kink-state bands.

The unit cells of the third and first kinds of topological
defects have similar structures, i.e., two pentagons and one
octagon. However, the resulting band structures are completely
different because of their difference in patterns. In the absence
of staggered potentials, the bands are similar to the normal
zigzag graphene ribbon, except that there is a trivial band gap
arising from the finite size effect [see Fig. 12(a)]. When the
staggered potentials are included in the calculation, we can
observe gapless ZLMs both for same and opposite topology
configurations. The major difference is that there is one pair of
ZLMs for the same topology [see Fig. 12(b)], while there are
two pairs of ZLMs when the topologies are opposite, as we
show in Fig. 12(c). In other words, the third kind of topological
defects allows the generation of two pairs of kink states in
monolayer graphene, which is not possible in the absence of
topological defects. In Fig. 13(c), the LDOS distribution shows
that the ZLM can still appear in the presence of the third kind
of topological defects.

Because of the periodicity of the topological defects,
the transport of the ZLMs is completely determined by the
band structures and the conductances between left and right
terminals are always exactly quantized for any Fermi energy
that lies inside the bulk band gap. Based on this analysis,
we conclude that the 1D ZLMs can survive even in the
presence of several different kinds of periodic topological
defects. However, in reality, the topological defects are not
normally periodic, but appear in a random way. To complete
our discussions, in the following, we will explore the effects
of a single topological defect on the ZLMs.

B. Single topological defect

Here, we would further study the effect of a single isolated
topological defect on the 1D ZLMs. Similar to our analysis
of periodic line defects, we consider three different kinds
of topological defects. In Fig. 14, we show three possible
configuration setups in the presence of a single isolated
topological defect. The blue dots are used to represent the
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FIG. 13. (Color online) LDOS distribution of the kink states from
the left lead for the three different setups shown in Fig. 9. (a) Kink
state in Fig. 10(b) from the first kind of topological defects. (b) Kink
state in Fig. 11(b) from the second kind of topological defects. (c)
Kink state in Fig. 12(c) from the third kind of topological defects.
The Fermi energy is set to be E/t = 0.05.

topological defect; grey dots represent the carbon atoms where
no staggered AB sublattice potentials are applied; black and
white dots have staggered AB sublattice potentials. In our
numerical simulation, the studied system shows the transla-
tional characteristic of the regular honeycomb lattice structures
(represented with a dashed box) except the highlighted blue
region. Due to the lack of the translational property of the
whole lattice structures, one cannot analyze the ZLMs through
plotting the corresponding band structures. Therefore we
should study the transport properties of the ZLMs in the
presence of a single isolated topological defect by using the
Landauer-Büttiker formula coupled with the nonequilibrium
Green’s function technique in mesoscopic samples.

The two-terminal conductance G is represented in Fig. 15
as a function of the Fermi energy E for a zigzag graphene
nanoribbon in the presence of three different kinds of single
isolated topological defects. The system size in the central

(a) (b) (c)

FIG. 14. (Color online) Schematic plots of zigzag graphene rib-
bons in the presence of a single topological defect. (a)–(c) stand
for three different kinds of topological defects. Blue dots denote the
topological defect. Grey dots denote carbon atoms in the absence of
staggered AB sublattice potentials. Black and white dots are subject
to staggered AB sublattice potentials. The dashed square is used to
specify the periodic unit cell along both left and right directions.
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FIG. 15. Two-terminal conductance G vs Fermi energy E for
three different topological defects in a mesoscopic zigzag graphene
ribbon illustrated in Fig. 14. The dimensions of the scattering
region consist approximately of 20 × 320 atoms for three different
topological defects.

region corresponds to an area produced by roughly 320 × 20
number of atoms in the x and y directions, respectively. Note
that there is only one topological defect in each system. We
found that (i) the conductances are no longer symmetric about
E/t = 0; (ii) the conductance in the presence of the first kind
of topological defects is greatly altered; (iii) the conductances
in the presence of the second kind topological defects are
close to a constant of 0.9e2/h; and (iv) the conductances in
the presence of the third kind topological defects are almost
unaffected, close to the quantized value. Because the ZLMs can
only emerge for the same crystal topologies for the first kind
of topological defects, while they can form for both the same
and different crystal topologies in the presence of the second
and third kinds of topological defects, the crystal topology can
be easily and largely altered by the first kind of topological
defects, which results in a substantial decrease of the conduc-
tance. However, for the third kind of topological defects, any
crystal topology gives rise to perfect gapless kink state bands,
and does not have a destructive influence in the ZLMs.

From the results shown in Fig. 15, we find that these three
kinds of topological defects can have a negative influence
in the preservation of the ZLM’s propagation. In order to
understand better how the ZLMs are reflected in the topological
defect regions, we calculate the LDOS of the ZLM coming
in from the left terminal into the central scattering region
in the presence of single isolated topological defects for a
zigzag graphene nanoribbon, see Fig. 16. The panels (a)–
(c) correspond, respectively, to the three different kinds of
topological defects at the fixed Fermi energy E/t = 0. We
use the green square to indicate the location of a single
topological defect. We find that although the conductances
are significantly decreased for the first and second kinds of
topological defects, the LDOS distributions maintain the 1D
localization of a 1D ZLM in pristine samples and do not show
significant deviations in shape. The single topological defect
will allow the backscattering of the right-propagating ZLM to
the counter-propagating channel located in the same zero line
thanks to the strong intervalley scattering. We find a negligible
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FIG. 16. (Color online) LDOS distribution for the kink state
injecting from left lead in the presence of a single topological
defect. (a) First-kind topological defects. (b) Second-kind topological
defects. (3) Third-kind topological defects. In all three cases, the
Fermi energy is set to be E/t = 0. Green squares are used to label
the location of a single topological defect. Color bar represents the
intensity of LDOS.

alteration due to disorder in the spatial confinement of the
ZLM produced by the kink potentials.

To summarize this section, we show that ZLM can still
exist in systems with any kind of the three considered periodic
topological defects. For a single topological defect, we find
that although the 1D propagating behavior is not altered, a
first-kind topological defect leads to a significant degradation
of the ZLM due to its high dependence on the AB sublattice
symmetry. On the contrary, the ZLMs are much more robust
against the remaining two topological defects. As a general
statement we can conclude that the presence of the topological
defects can influence the rate of backscattering of the ZLM
but barely affects the confinement properties along the 1D
zero line.

V. CONCLUSION

In summary, we have studied the influence of the device
geometries and topological defects on the electronic structure
and transport properties of zero-line modes in bilayer and
single-layer graphene systems. The analysis of the band
evolution of the quantum valley Hall edge modes and the
ZLMs in bilayer graphene ribbons shows that the edge modes
of the quantum valley Hall effect will develop changing gaps
as the ribbon orientation deviates from the zigzag direction,
while the corresponding ZLMs remain all the way gapless
except for the armchair direction. When the bilayer graphene
ribbon evolves into the armchair type, the two pairs of ZLMs
become completely mixed and lead to an abrupt opening

of a small avoided gap. The ZLMs thus show more robustness
than the edge modes of QVH states and the valley indices are
distinguishable in nonarmchair ribbons.

To produce high-quality zero line modes in bilayer
graphene, a precise alignment of four identical gates is required
in traditional device setups. We provided a theoretical analysis
of two practical imperfections in the geometry of real samples:
(1) the in-plane separation distance between the top/bottom
gates can not be made arbitrarily small. To date, the most
achievable value is about 100 nm. (2) The top gates and the
bottom gates can not aligned preciously. Our band structure
calculations indicate that both the finite distance and the
vertical misalignment of gates will suppress the ZLM signal.
Specifically, the split distance will introduce localization of
bulk states at the band edges and narrow the energy range of
ZLMs and the misalignment between the top and the bottom
gates will induce a density imbalance of bound modes and
greatly distort the dispersion curves of the ZLM. In order to
observe the ZLMs, the upper limit of the split distance is about
100 nm for electrically controlled bilayer graphene systems

To simplify the experimental preparation, we propose an
alternative gate setup consisting of two global gates and two
local gates. In this setup, the only adjustable parameter is the
in-plane alignment between the two local gates. Band structure
calculations show that high-quality ZLMs exist over a broad
energy window in our proposed device setup.

We then analyzed the effects of the topological point defects
in the zero-line transport. For this purpose, we simulated
a single-layer graphene system subject to AB staggered
potentials in the presence of point defects along the zero line.
We find that the spatial confinement of the 1D kink states
remains largely unaffected by all three types of topological
defects and therefore the observability of their local density
of states through scanning microscopy probes will not be
decreased. However, the transport properties are affected by
enhanced backscattering especially when the point defects
eliminate the distinction between the AB sublattices, but
the backscattering is not strong for the other types of point
defects. Our analysis of gate geometry effects and the relative
robustness of the ZLM to point defects based on lattice tight-
binding and Landauer-Buttiker transport calculations suggests
optimistic prospects for the detection of ZLM signals in
realistic top-bottom gated devices with the currently available
gate edge alignment precision on the order of a few tens of
nanometers.
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